Big Data To Play Big Role In Modern-Day Shipping

1
478

Big Data Analytics is the science of uncovering insights, patterns and correlations and discovering meaningful information from mounds of data that exists in various forms, structured and un-structured, using techniques from different scientific fields such as statistics, data modelling, machine learning, mathematics, computer science, neuroscience, visualisations, business intelligence and many others.

It could be characterised as the process of turning data into insights and insights into meaningful actions, enhancing in this way the decision making capabilities of a company and as a result reducing costs and improving upon performance.

Data science or data art could be characterized as an attempt to shift away from the traditional empirical-based reasoning to a formal, scientific, data-driven way of thinking and operational tactic.

Data analytics is driving incremental value for ship owners and charters by influencing decision across different business, tactical, operational as well as strategic functions of the marine industry.

As more and more data are collected, stored and analysed, shipping companies are beginning to appreciate and thus aim to utilise the value of this data in order to make informed decisions, managing in this way the company in a better and more efficient way.

The shipping industry is inevitably undergoing a massive but beneficial change driven by Big Data capabilities across different areas:

Fuel consumption: Combination of the appropriate sensors and optimisation techniques can be applied in order to understand under what conditions a given ship has optimised fuel consumption at maximum performance. This can be translated into huge savings.

Route and supply-chain optimisation: Advanced analytics and optimisation techniques can be applied on the data related to the routes followed by the ships in order to derive an optimal strategy related to the order of the different destinations across different routes to be followed.

Operational efficiency: Optimize marine operations, manage staff time efficiently and identify cost savings through comprehensive maritime data that include information about ships, ownership, builder, company, ports and route details.

Threat management: Identify companies that pose credit and security risks, with extensive ship, company and Automatic Identification System (AIS) data.

Market size and competition: Understand the world fleet, ship and ship ownership information, as well as new markets.

Maintenance prediction: Through sensors on the ships combined with advanced predictive analytics techniques can be applied in order to identify which areas of the ship need priority in terms of maintenance. This will ensure that maintenance is considered at the optimum moment, preventing delays, increasing efficiency and reducing the time required for a ship to be in maintenance mode.

Cargo tracking: A big problem in shipping industry is that many shipping containers are lost every year due to different factors. This costs a lot of amount of money and time for investigation. A solution is to apply data analytics on a datasets related to these lost containers and derive some special characteristics or features about those containers and their environment. This might help to reduce similar problems in the future and thus avoiding extra costs due to losses.

Regulatory compliance: Use ship and ownership/registration data to determine any connection to sanctioned countries or countries posing legal or financial risk.

Shipping Industry’s Progress on Big Data

The shipping industry, in particular, has lagged behind other businesses in moving beyond paper-based processes and using centralized computers to automated key processes. To be sure, there are big, customized ERP systems in place at many of the biggest shippers.

However, many of the smaller ones have only dipped their toes into the digital waters. The challenge is formidable, to be sure, but that makes the pay-off potentially much bigger.

Industry leaders are stepping up to confront the challenges and opportunities that digitization and big data present to shipping. The advent of GPS navigation, real-time weather data feeds, and RFID-equipped smart containers promise to transform the shipping business, optimizing the delivery of goods and the distribution of containers, according to Dieter Berg, the head of business development for Munich Re Global Marine Partnership.

The Future of Big Data in Shipping Industry

Shipping industry would start competing on analytics and embracing the new science of winning by investing in data science capabilities within their enterprise. The ideal candidates to drive this revolution are the so-called data scientists.

Among the responsibilities of a data scientist is empowering management and officers to make informed and potentially better decisions, direct the actions based on trends which in turn help in goals definition, promote best practices in the fields of business intelligence and data governance, transform the decision making capability into a quantifiable data driven procedure, quantification and redefinition of the enterprise’s strategy and deployment of analytics models within the enterprise’s pipeline.

(References: Cyprus International Institute Of Management, datanami)

Sea News Feature, August 17

Baibhav Mishra
Author: Baibhav Mishra

Associate Editor, Sea News

Comments are closed.